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A BS T RA CT 

A survey of the l i t e ra ture  pertaining to f r e e  vibrations 
of thin elast ic  shells is presented with par t icu lar  atten- 
tion to shells of different geometr ies ,  The abundant 
l i t e ra ture  on the vibration of c i rcu lar  cylindrical  shel ls  
is reviewed only to the extent that i t  sheds light on the 
genera l  shel l  vibration problem. Only limited infor - 
mation concerning other shell configurations exis ts  in 
the published l i terature.  Of these the spher ica l  shel l  
and the truncated conical shell have received by far the 
most  attention, however, even for  these shells complete 
correlat ions between the analytic resu l t s  and exper i - ,  
mental  data  has  yet to be made. F o r  these and other  
shel l  geometr ies  there  i s  a d i r e  need to develop new 
approximate techniques which enable one to solve p r a c  - 
t ical  problems with acceptable accuracy. 



INTRODUCTION 

The vibrations of thin elastic shel ls  have at t racted theoret ical  

in te res t  among re sea rche r s  in the field of mechanics and of acoustics 

f o r  a lmost  a century. 

m o r e  recently,  of miss i le  and space programr  added new impetus to 

the r e sea rch  efforts on this subject because of its increased prac t ica l  

importance.  However, owing to the intrinsic complication of the prob-  

lem,  the analytic, as well a s  experimental  resu l t s  accumulated in the 

technical l i terature ,  a r e  far from adequate to present  a c l ea r  picture  

of the vibration problem even fo r  the simplest  shel l  configurations. 

The main difficulty l ies  not in the formulation of a se t  of equations 

describing the vibrations of the shell ,  but ra ther  in the simplification 

and solution of these equations. In the existing l i t e ra ture ,  solutions 

with some generali ty of even the approximate bending theory developed 

by Love [ l ]  

extremely r a re .  

The emergence of the a i r c ra f t  industry and 

4. 
*’%> (often r e fe r r ed  to as Love’s f i r s t  approximation) a r e  

To find escape from the nearly unsurmountable mathematical  

difficulties, var ious approximate theories a r e  introduced to solve c e r  - 

tain c l a s ses  of shel l  vibration problems. 

inextensional vibrations of shel ls  was f i r s t  proposed by Lord Rayleigh 

The well known theory of 

>: 
Numbers  in brackets  r e f e r  to references cited a t  the end of this  paper.  
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proaches mentioned above a r e  evidently on the opposite extremes.  In 

I the theory of inextensional vibrations,  the s t r a in  energy i s  assumed to 

[ 21 in 1881. He assumed by physical reasoning that, for  the funda- 

mental  modes,  the middle surface of a vibrating shel l  remains  un- 

stretched. The displacement functions of the middle surface can  be 

determined with this condition, and the fundamental frequencies a r e  

then found f rom the potential and kinetic energy corresponding to 

the se  displacements 

Another type, of shel l  vibration is the extensional vibration 

(also a f te r  Rayleigh), in which the deformation is mainly extensional. 

Since the f lexural  rigidity of a thin shell against  l a t e ra l  bending is always 

much sma l l e r  than i ts  res is tance to stretching in the middle surface,  

the presence  of any appreciable degree of middle surface stretching w i l l  

be accompanied by lqrge membrane s t r e s s e s 3  and consequently, w i l l  

render  the bending s t r e s s e s  relatively unimportant, F o r  this type of 

vibration mode:, the membrane  theory naturally offers itself a s  an 

app r oxim ate  app roach. 

F r o m  the point of view of the s t ra in  energy that is periodically 

s tored into the shel l  wall during vibration, the two approximate ap-  

be associated with bending s t r e s s e s  only, and no membrane  s t r e s s e s  

exist  s ince the displacements a r e  determined by the inextension con- 

dition. Qn the other  hand, when membrane theory is used to study the 

extensional vibrations of a thin shell ,  the s t r a in  energy is assumed to 



be solely associated with membrane  s t r e s s e s  and that associated 

with bending is neglected, These two approximations do not con- 

t radict  each other  a s  they seem to a t  f i r s t  sight;  instead, they a r e  

complementary for  the p,urpose of determinaticn of var ious v ibra-  

tion modes. It is well known that, in the l inear  vibrations of beams 

o r  of thin plates ,  the la te ra l  (or flexural) vibrations a r e  independent 

of the longitudinal vibrations;  in other words,  the equations of motion 

in l a t e ra l  and longitudinal directions a re  uncoupled and can be t reated 

separately.  In the vibrations of shells, of course,  we do not have 

uncoupled equations of motion. However, detailed studies indicate 

that the vibration modes of a shell  can be generally classified into d i s -  

tinct groups ( see ,  for  example, Refs. [8] [ 2 3 ]  , [ 2 6 ]  [29] 

[30] ). One of the groups is dominantly t r ansve r se  vibration modes 

in which the s t ra in  energy associated with bending predominates,  while 

another group is dominantly extensional vibration modes in which the 

s t r a i n  energy is mainly due to stretching. It is because of this property 

of the she l l  vibration spectrum that the two c lass ica l  approaches receive 

continual attention. 

Aside f rom the two general  approximate theories ,  there  a r e  

some other  approache-s proposed for certain specific shel l  configura- 

tions. Notably, the Donne11 equations fo r  c i r cu la r  cylindrical  shel ls  and 

the Reissner  equations for  shallow shells a r e  examples. 

of theories ,  the governing differential equations a r e  simplified by 

In these types 
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neglecting some unimportant t e r m s  based on geometr ic  arguments  o r  

on an o rde r  -of-magnitude analysis. Consequently, the accuracy of the i r  

resu l t s  depends largely on how well these basic assumptions a r e  s a t i s -  

fied. 

markably accura te  solutions under favorable conditions, but a l so  in  that 

they often throw light on the solutions of m o r e  elaborate  theories .  

The mer i t  of these theories lies not only in that they yield r e -  

It should be pointed out here  that, in this review, the tors ional  

vibration of she l l s  of revolution have been intentionally left out of 

consideration. 

tions of a spherical  shel l  a r e  uncoupled f rom other vibration modes 

In 1888, Love fur ther  proved that the axisymmetr ic  tors ional  v ib ra -  

tions of a she l l  of revolution a r e  independent f rom extensional v ib ra -  

tion modes [4] . 
Goldberg and Sale+qno [5] that the torsional vibration modes a r e  un- 

coupled f rom both bending and extensional modes in  shells of revolution. 

Ea r ly  in 1882, Lame had found that the tors ional  v ib ra -  

[3] 

A m o r e  general  proof w a s  recently given by Garnet ,  

In the following, a brief review of the numerous technical pape r s  

on vibrations of shel ls  is presented. 

of the th ree  categories  of approximate approaches mentioned above, 

there  a r e  a few recent  papers  that give complete solutions for  the m o r e  

exact bending theory for  cylindrical and spher ica l  shells.  

Although most  papers  fa l l  in one 



VLBRATJONS O F  CIRCULAR CYLINDRICAL SHELLS 

Since the problem of vibrations of a c i rcu lar  cylindrical  she l l  

has received so  much attention because of i t s  p rac t ica l  importance and, 

perhaps more  significantly, of i ts  relative simplicity in  analysis,  i t  

s eems  necessary  to include in this survey only a br ief  chronological 

review of the most  important resul ts  on this subject. 

study on the vibrations of cylindrical  shells w a s  made by Lord Rayleigh 

The ea r l i e s t  

[ 2 ]  and also t reated by Love [l] 

gives two se t s  of vibration modes. 

dimensional modes (axial displacement U = 0),  with the frequency 

equation 

Rayleigh's inextentional theory 

The f i r s t  s e t  consis ts  of two- 

I 

where P, is the angular frequency, n the c i rcumferent ia l  wave 

number,  a the radius of the middle surface, and other  notations com- 

monly used in this field. 

with the frequencies given by 

The second se t  of modes is  three-dimensional 

where 2 

by Love that the inextensional displacements fail to satisfy the equations 

of motion and the boundary conditions andJ therefore ,  correct ions a r e  

is the length of the cylindrical shell. It has been pointed out 
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needed for  bet ter  results.  The correction to the displacement required 

to satisfy the boundary conditions appears to be the more  important one, 

However, the extensional s t r a in  which is necessary  in o rde r  to secure  

satisfaction of the boundary conditions is practically confined to a ve ry  

narrow region near  the boundary. Fur thermore ,  its effect in altering 

the total  amount of the potential energy, and therefore  the frequencies,  

is sma l l  in thin cylindrical  shells.  

The extensional vibrations of cylindrical  shel ls  have a l so  been 

investigated fully by Rayleigh and in many other c lass ica l  studies. 

the case  of symmetr ica l  vibrations,  the displacement takes  place in 

planes through the axis ,  and the frequency equation is found to be 

In 

If the length f is large compared with the radius a, the two types of 

vibrations are-, (1) a lmost  purely radial with 

and (2) a lmost  purely longitudinal, with 

These  resu l t s  a r e  only approximate because the bending stiffness is  

neglected. 

modify Rayleighn s extensional theory by the following steps. 

Baron and Bleich [123 developed a method to co r rec t  and 

F i r s t ,  the 



7 

natura l  frequencies and their  corresponding mode shapes a r e  calculzted 

by RayleighVs membrane  theory, Then using these mode shapes and 

the s t r a in  expressions cf F15gge 661 they computed the maximum 

potential energy of bending. F-nally the cor rec ted  frequencies a r e  

obtained by emp1oy:ng Rayleigh's principle with the combined maximum 

membrane  and bending energy. 

lower modes and thinner shells.  

This procedure give-s good resu l t s  fo r  

Studies on the vibrations of thin cylindrical  shel ls  based on 

the m o r e  accura te  bending theories  have been made by Love FlGgge, 

Arnold and Warburton, and others.  

equations of motion of his first approximation theory which leads to an 

asymmetr ic  frequency determinant. 

s t r e s s  and rotatory inertia.,  FlGgge 163 derived a se t  of equations for  

f reely-supported cylindrical  shel ls ,  which include bending and t r a n s -  

v e r s e  s h e a r  effects. 

determinant  which yields three natural f requencies  f o r  any par t icu lar  

nodal pat tern,  each being associated with a unique a r rangement  of 

the rat io  of the displacement in  the three orthogonal directions.  

Love [4] workgd direct ly  with the 

Neglecting t r ansve r se  no rma l  

His. thecsy leads to a symmetr ica l  frequency 

Kn their  papers  of 1948 and 1951, Arnold and Warburton [8] 

presented an extensrve Investigation of the vibrations cf cylzn- 

, 

[ 9 ]  

d r i c a l  shel ls  with f reely supported ends. 

expressions and assuming displacements s imi la r  to those assumed by 

FlGgge Arnold and Warburton employed Lagrange equations to se t  up 

By using TirncshenkoJ s s t r a in  
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their  frequency equation. 

their  experimental  data f o r  the range of pa rame te r s  tested.  

resul t  revealed by their  study is  that the s t r a in  energy, being plotted 

against  the number of circumferential  ncdes-  has  a qninimum a t  c e r -  

tain specific number of circumferential  nodes* This  explains the fact  that 

the lowest frequency does not in general  assoc ia te  with the s implest  nodal 

pattern.  

The results showed excellent agreement  with 

An interesting 

Many la te r  efforts have been made at an attempt to improve 

the she l l  equations by expanding the various quantities in  the three  -dimen- 

sional equations of elasticity into power s e r i e s  of the thickness,  and 

retaining second o r d e r  t e r m s ,  

tial equations for  cylindrical  shel ls  by this procedure.  

have used Kennard equations to study the ax isymmetr ic  o r  asymmetr ic  

motions of a cylindrical  shell. 

by Naghdi 1111 and o thers  on the ground of inconsistency and the fact  

that i t  leads to an  unsymmetric frequency determinapt  and thereby does 

not satisfy the conservation of energy. 

Kennard [lo] derived a s e t  of differen- 

Severa l  authors  

Kennardus theory has been cr i t ic ized 

Many other works have been directed toward a shel l  theory 

which includes the ro ta tory  iner t ia  and t r ansve r se - shea r  effects, These  

considerations,  which a r e  important in vibrations of thicker shel ls  and 

f o r  the higher o r d e r  modes,  enlarge the range of applicability of the 

bending theory. 

includes the rotatory 'nertia and shear. but neglects the t r ansve r se  

Mirsky and Herrmann [13] formulated a theory which 



normal  s t r e s s  effects. 

s t r e s s  is  also considered for  axially symmetr ic  casqs.  

contains two shea r  constants (one associated with shear  deformation 

in c i rcumferent ia l  direction, the other with that in axial direction) which 

a r e  determined by solving the t ransverse shea r  vibration problems in 

corresponding directions.  

equations in displacement components in which the rotatory iner t ia  and 

t r ansve r se  shea r  effects a r e  a l so  considered. 

uncoupled eighth o r d e r  equation in radial displacement and resu l t s  in 

a cubic frequency equation. Cooper and Naghdi [161, also developed 

she l l  equations which include rotatory iner t ia  and t r ansve r se  shea r  

s t r e s s  effects. 

two s e t s  of equations re fer red  to as system I and system II, in which 

In a la te r  paper [14] the t r ansve r se  normal  

The i r  theory 

Yu [ 151 derived a se t  of Donne11 type 

Yu's theory gives an 

They s t a r t  with ReissnerU s variational method and der ive 

the la t te r  is a simplified p d  approximate f o r m j  not including the effects 

of t r ansve r se  shea r  and rotatory inertia. Greenspon [17] developed 

a theory for  vibrations of thick-walled cylindrical  shells,  including all 

effects of t r ansve r se  shear  s t r e s s e s ,  rotatory iner t ia ,  and t r ansve r se  

no rma l  s t r e s ses .  

approximate theories  and, their  range of applicability. 

He includes a cri t ical  comparison between the var ious 

It should a l so  be mentioned that many other  papers  have been 

published concerned with the vibration of cylindrical  shel ls  in  different 

acoustic media o r  in different initial s t r e s s  conditions. Fung, Sechler  

and Kaplan p 8 ]  studied the breathing vibrations of cylindrical  shells 



under internal  p re s su re .  

increases  rapidly with increasing pressure ,  and that the number of 

c i rcumferent ia l  waves of the fundamental mode d e c r e a s e s  when in -  

t e rna l  p r e s s u r e  increases .  

to study the f r e e  vibrations of cylindrical shells with axial  p r e s t r e s s .  

The vibrations of cylindrical  shel ls  under an init ial  s ta t ic  torque w a s  

investigated by Koval and Cranch [20] . Thei r  experimental  resu l t s  

show that the axial nodal l ines tend to bend into helixes. 

treating var ious specific vibration problems of cylindrical  shel ls  a r e  

too many to mention here .  

They found that the fundamental frequency 

Nachbar [19] uses  DonnellUs equations 

Other papers  



I 11 

VIBRATIONS O F  SHALLOW SHELLS AND 
SPHERICAL SHELLS 

The inextensional vibrations of a thin spherical  shel l ,  closed 

a t  one pole and open a t  the Gther were a l so  f i r s t  studied by Rayleigh 

[ 2 1  and t reated briefly by Love in  Reference [ l]  a The resulting 

frequency equation is much more  complicated in form than that for  

cylindrical  shells.  

f requencies  a r e  given approximately by 

In the case  of a nearly complete sphere,  the 

where p,, is the angular frequency, p the Lame  constant, a the 

opening angle which is near ly  

that the frequency tends to infinity as &+co 

that  the inextensional theory does not apply to near ly  complete spheres .  

The inextensional theory has received l e s s  attention in recent  y e a r s  

evidently because its basic assumption r e s t r i c t s  the solution from 

satisfying var ious boundary conditions which have significant effects 

on dynamic charac te r i s t ics  of an  open spher ica l  shell. 

for a sma l l  opening. It is seen  

This  fact  indicates 

The extensional vibrations of a complete spherical  she l l  have 

been investigated by Lamb [ 3 ]  in 1883. SJeglecting the bending stiff- 

nes s ,  he found that the displacement in extensional modes can be 

expressed  in t e r m s  of spherical  harmonics of a single integral  degree-  

An essent ia l  charac te r i s t ic  of this theory (also of any membrane  theory) 
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is  that the frequencies of all modes a r e  independent of the thickness. 

Baker [30] made an extensive study on the frequencies and na tura l  

modes of the axisym.metrlc extensional vibrations of a spherical  shell. 

It Is found that the frequency spectrum consis ts  of two infinite se t s :  

(1) the lower branchJ in which a l l  frequencies a r e  confined in a n a r -  

row band, (2) the upper branch, i n  which frequencies have no upper 

limit. 

degenerated case  of the bending modes when thickness tends to zero. 

Therefore ,  only the second se t  is acceptable as a p a r t  of the ent i re  

spectrum. 

In a recent  paper  Kalnins [32] shows that the f i r s t  se t  is  a 

The f i r s t  general  dynamic theory of thin shel ls ,  including both 

f lexural  and extensional deformations, w a s  given by Love [4] in  1888, 

but few at tempts  have been made to  solve vibration problems of shel ls  

in a long period following LoveDs work. 

Federhofer  [ 341 derived three  coupled equations of motion for  spher ica l  

shel ls  in  displacement components, but only an approximate solution 

w a s  obtained for  axisymmetr ic  vibrations of clamped shallow spherical  

caps. 

governing equations to two coupled equations in t r ansve r se  displacement 

and a s t r e s s  function by neglecting longitudinal iner t ia  t e rms .  Using 

the simplified theory, Reissner  [22] 

[24] solved the problem of t ransverse  vibrations of shallow spher ica l  

It w a s  not until 1937 that 

Based on Margue r reUs  equations, Reissner  [21] reduced the 

and Johnson and Reissner  [23] 



shel ls  with var ious  boundary conditions. 

reduce to those of flat plates  when the curva ture  on the fundamental  f r e -  

quency became significant even when the r i s e  of the she l l  was only of the 

o r d e r  of the thickness.  

l a t e ra l  vibrations of shallow she l l s ,  the s t r a i n  energy due to stretching 

w a s  as important  a s  that due to  bending. A m o r e  gene ra l  study on the 

dynamic problem of shallow she l l s  i s  advanced by Naghdi [ 2 8 ]  which 

contains the effects of longitudinal inertia and is exact within the scope of 

bending theory o f  shallow shel ls ,  and Kal- 

nins [26] employed this gene ra l  theory in the i r  studies of f r e e  v ibra-  

t ions of a shallow spher ica l  shell. It w a s  fouvd that the e r r o r s  intro-  

duced by neglecting longitudinal inertia t e r m s  w a s  ve ry  s m a l l  (a few 

percent )  i f  the p a r a m e t e r s  a r e  within the admiss ib le  range of shallow 

shells.  In a l a t e r  pape rp  Kalnins [27] derived a s e t  of t h ree  uncoupled 

different ia l  equations fo r  shallow spherical  shel ls ,  including the effects 

of ro ta tory  inertia.  

de te rminant  with i t s  e lements  expressed by Besse l  functions. 

m e r i c a l  r e su l t s  were  presented owing to the difficulty of solving this 

frequency equation. HoweverJ i t  was concluded in  KalninU s paper  that,  

a t  high frequencies  (in the neighborhood and above the frequency of the 

f i r s t  th ickness-shear  mode), the bending theory ceased  to  pred ic t  

na tura l  f requencies  with accuracy because the effects  of thickness  - shea r  

The equations and solutions 

Re i s sne r ’ s  theory a l so  indicated that,  in the 

Kalnins and Naghdi [25] 

The frequency equation involves a five by five 

No nu- 
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I 

and rotatory iner t ia  come into plays 

t r ansve r se  modes and longitudinal modesJ there  exis ts  a third se t  

of vibration modes, the thickness -shear modes. 

In summary ,  the vibrat-ons of shallow shel ls  can be t reated 

Fur the rmore ,  in  addition to the 

in three  stages: (1) fo r  frequencies of the o rde r  of magnitude w = 

( E / ?  

Reis sne rVs  theory, [21] applies, 

magnitude w = ( E / ?  ) 1 / 2 / a ,  the longitudinal iner t ia  must  be considered 

and Naghdils equations [28] must  be employed, 

h / a 2 J  the vibration is predominantly t r ansve r se ,  and 

(2) for frequencies of the o r d e r  of 

(39 when the f r e -  

quencies a r e  of the o rde r  of magnitude w = (E/? )'I2 /h ,  then the 

secondary effects of t ransverse-shear  and rotatory iner t ia  a r e  no 

m o r e  negligible, and Kalninsl modified equations should be used. It 

appears  that  the improvement in accuracy and generali ty is accomplished 

by g rea t  sacr i f ice  of mathematical  simplicity and readiness  to yield 

numer ica l  resul ts .  

Based on Naghdiu s general  theory with longitudinal iner t ia  

neglected" Archer  [29] investigated the influence of uniform initial 

s t r e s s  s t a t e s  on the frequencies of t ransverse  vibrations of shallow 

spher ica l  shells.  the 

frequency dec reases  a s  the compressive s t r e s s  gets  l a rge r ,  until the 

buckling s ta te  is reached with zero frequency. 

When the initial s t r e s s  i s  a compressive one 
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The f i r s t  successful  effor t  in solving free-vibrat ion prob1er;ls 

of nonshallow spherical  shel ls  w a s  made by Naghdi and Kalnins [31] 

Based on Love's bending theory, they derived two coupled differential  

equations for  tors ionless  axisymmetric motion in no rma l  displacement 

and a s t r e s s  function. The solution is expressed in  t e r m s  of Legendre 

functions of the fir-st and,second kind, but the frequency equation can not 

be solved in explicit form owing to its transcendental  charac te r .  Nu- 

mer i ca l  analysis  shows that, fo r  axisymmetric vibrations, the mem - 

brane  theory gives an acceptable fundamental frequency only for  very  

sma l l  thickness. 

according to bending theory, requires  in principle the evaluation of 

a four -by-four determinant containing associated Legendre functions 

of complex degrees  and their  derivatives, 

In the asymmetr ic  case the calculation of frequencies,  

No attempts a r e  made to 

obtain numerical  resul ts  because of the fact that, except fo r  the Legendre 

polynomials, the available tabulation of Legendre functions is  incom - 

plete and limited. In a la te r  papery  Kalnins [32] made an extensive 

analysis  of the effects of bending on axisymmetr ic  vibrations of non- 

shallow spher ica l  shells closed a t  one pole and open a t  the other with 

var ious conditions. The resul ts  show that the frequency spectrum con- 

s i s t s  of two infinite s e t s  of modess which a r e  coupled and in te rspersed-  

According to the ratio of bending-strain-energy to total  s t r a in  energy, 

Kalnins designated one se t  the bending modes and the other se t  m e m -  

brane  modes. Though the thickness shear and rotatory iner t ia  a r e  
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neglected, the computation f o r  natural  frequencies is lengthy and in\ olved. 

In a recent  paper ,  P ra sad  [ 3 3 ]  advanced an analysis  for  vibrations of 

spherical  shel ls  that incorporates the effects of thickness shea r  and 

rotatory iner t ia  besides the coupling of extensional and t r ansve r se  v ibra-  

tions. 

ferent ia l  equations a r e  reduced to three; two a r e  uncoupled pa r t i a l  dif- 

ferent ia l  equations and the remaining one is partially coupled. The 

choice of the auxiliary var iables  is s imilar  to those used by Kalnins 

for  shallow spher ica l  shel ls  [27]  

in associated Legendre functions and no numerical  resu l t s  a r e  available. 

By a suitable choice of auxiliary var iables ,  the governing dif-  

The solutions a r e  a l so  expressed 

A s  a consequence of the works due to Naghdi, Kalnins and 

P rasad ,  some genera l  r emarks  can be made concerning vibrations 

of nonshallow spherical  shells. 

theory a r e  valuable in predicting par t  of the frequency spectrum, 

though the extensional and la te ra l  vibrations a r e  always coupled. 

coupling effects a r e  especially important for  the lower frequencies in 

the se t  of bending modes. 

not negligible in the vibrations of nonshallow shel ls  with nonzero Gaus-  

s ian curvature.  Fur thermore ,  the general  spectrum of vibrations of 

a thin spher ica l  shell ,  including thickness-shear and rotatory iner t ia  

effects, can be classified into five distinct infinite sets:  

modes which depend least  on thickness, 

The membrane theory and inextensional 

The 

The longitudinal iner t ia  t e r m s  a r e  in genera l  

(1) extensional 

(2)  t r ansve r se  modes., ( 3 )  thickness 
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shea r  modes2 coming into prominence. a t  higher f requencies ,  

(4) rotational in-plane motions, and (5) rotational sur face  motion 

in s h e a r ,  
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VIBRATIONS OF CONICAL SHELLS 

Although the c i rcu lar  conical shel l  has  probably the s implest  

geometry besides the c i rcu lar  cylindrical shel l  and the spherical  shell ,  

i t s  analysis  involves much g rea t e r  mathematical difficulty. An impor -  
t 

tant reason is that the governing differential equations of conical shel ls  

have var iable  coefficients because of the change in  curvature  f rom 

point to point. Most work dealing with conical shel ls ,  therefore ,  has  

to rely on the Rayleigh-Ritz method or numerical  integration. 

The inextensional deformation of a conical shel l  closed at the 

apex has  been proven impossible. Also, all thin shel l  theories  cease  

to be valid near  the apex because of the violation of the basic assumption 

that the thickness is s m a l l  compared with the minimum radius of c u r -  

vature.  Therefore ,  all works concerning conical shel ls  apply to 

truncated conical shel ls  only. 

inextensional vibrations of conical shells, clamped a t  one end and f r e e  a t  

the other ,  can be found in  German  technical l i t e ra ture  (see Ref. 

Some early studies on ax isymmetr ic  

[ 36 ]  

and the resu l t s  a r e  reported to check poorly with experimental  data. 

Saunders  and Pasley 

problem by applyiiq Rayleight s inextensional theory. 

the na tura l  frequencies of a truncated conical shel l  with a spher ica l  

she l l  segment connected to the minor end of the cone. 

and experimental  data were  provided and good agreement  w a s  observed. 

371 made a n  investigation on a par t icu lar  engineering 

They calculated 

Numerical resul ts  



In a l a t e r  paper.. Saundersg Wisniewski. and Pas lay  1381 

the Rayleigh-Ritz method to investigate a m o r e  general  case.  

assuming the displacement components and using a s t r a in  energy 

expression including both bending and stretching energy? they ca l -  

culated the na tura l  frequencies of the asymmetr ic  vibrations of a 

conical shel l  clamped a t  the minor ends hinged o r  f r ee  on the other 

edge. Thei r  numerical  resul ts  showed a lso  that the inextensional 

theory does not give satisfactory solution, especially for  low c i r -  

cumfe rent ia l  wave numbers.  

employed 

By 

Federhofer  1351 made a general  study of vibrations of 

conical shel ls  with a rb i t r a ry  conicity. 

components to be polynomial functions of the coordinate along the 

generator ,  he determined the frequencies by a Rayleigh-Ritz p r o -  

cedure.  

f rus tums  of wide ver tex angle may be obtained, Fede rhofe rUs  poly- 

nomial assumption cannot be expected to yield accurated resu l t s  for  

f rus t rums  of sma l l  ver tex  angles. 

of f reely-supported conical shells by an energy approach. 

displacement components to be trigonomitric functions in the axial  

direction, he obtained the equations of motion by Lagranges s equation, 

and solved the resulting frequency equation numerically. 

m e r i c a l  values of the frequencies were tabulated for  a closed conical 

Assuming the displacement 

Though good approximation to the natural  frequencies of 

Grigalyuk [36] made an analysis 

By assuming 

Some nu- 
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shell. A somewhat s imi la r  assumpticn and procedure has been employed 

by Herrmann and Mirsky [39] to analyze the vibration of slightly conical 

shel ls  with f reely supported ends. Numerical resu l t s  show that, for  

shor t  shel ls ,  the ccnicity lowers the frequency, while for  long shel ls ,  

the frequency increases  appreciably with conicity. 

that  the conicity has  strongest influence on frequency w h m  the number 

of c i rcumferent ia l  waves is three,  Seide [4O] used a n  energy expres -  

sion of his Donne11 type theory fo r  conical shel ls  to ipvestigate the 

problem, The longitudinal iner t ia  t e rms  a r e  neglected, and two types 

It was a l so  found 

of boundary conditions a r e  considered, namely s imple support with 

and without c i rcumferent ia l  res t ra int .  

an infinite determinant which is solved numerically by obtaining the 

roots of truncated determinants.  

The frequency equation contains 

Goldberg, Bogdanoff and Marcus [41] used the approach of 

numer ica l  integration to calculate the freq-lencies and mode shapes 

of ax isymmetr ic  vibrations of a truncated conical shell. They con- 

ver ted the governing equations into a system of six f i r s t -o rde r  differen- 

t i a l  equations which were  convenient to be integrated numerically.  

determination of the natural  frequencies w a s  essentially achieved by 

t r i a l  and e r r o r .  

served to indicate the e r r o r  of the t r ia l  value of frequency. 

recent  paper ,  Goldberg Bogdanoff and Alspaugh [42] extended this 

technique to the case  of asymmetr ic  vibrations of conical shells. 

The 

The nonvanishing value of the coefficient determinant  

In a more  

In this 
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case ,  the numer ica l  integration has  to be ca r r i ed  out for  an eighth 

o r d e r  system of twelve equations. 

be revealed by a limited number of weakly-related numer ica l  solu- 

tions, the method developed by Goldberg et. al. s e e m s  to be 

valuable pr imar i ly  in solving some particular engineering problems 

ra ther  than in probing the ent i re  frequency spectrum of the conical 

shel l  with a rb i t r a ry  conicity and other pa rame te r s .  

Since little physical  insight could 

Besides the theoret ical  efforts mentioned above, attention 

should be paid to a recent experimental study on vibrations of conical 

shel ls  made by Watkin and Clary [43] 

ported that conical f rus tums,  with free-free end conpitions, d i s -  

played interest ing t rends  in that a t  high resonant frequencies,  a g rea t e r  

number of c i rcumferent ia l  nodes occur at the major  end than a t  the 

minor  end. 

nodal l ines neither along the generator nor  along the para l le l  circle.  

Similar  experimental  resu l t s  were  observed by Hoppmann, et. al. , in 

a symmet r i c  vibrat_iops .of shallow shells 

boloidal shel ls  of revolution [45] 

met r i c  modes a r e  not along the lines of principle curvature.  

that analytic explanation of this phenomenon is extremely difficult. 

In their  paper  i t  w a s  r e -  

This  indicates tha t there  a r e  possible na tura l  modes with 

[44] and nopshallow p a r a -  

; namely, that nodal l ines of a s y m -  

It s eems  



VIBRATIONS O F  SHELLS O F  OTHER GEOMETRY 

Besides the three  types of shells discussed above, there  a r e  

many other she l l  configurations which a r e  of p rac t i ca l  Interest ,  such 

a s ,  cylindrical  shells with noncircular c r o s s  sectiond ellipsoidal shel ls ,  

paraboloidal shel ls ,  complete o r  incomplete toroidal shel ls  and non- 

shallow curved panels,  etc. It is not surpr is ing that the problem of 

vibrations of these shel ls  has  remained almost  untouched a s  one r e -  

ca l l s  the analytic difficulties in the treatment of the i r  s ta t ic  problems,  

ev en app r oxi m at e ly . 
In a recent  papers  Hwang [48] derived a membrane  theory 

for  ax isymmetr ic  extensional 'vibrations of shel ls  of revolution. F r o m  

the two coupled equations of motion in displacement components, he 

eliminated the t r ansve r se  displacement and obtained a second o r d e r  

differential  equation in  meridional displacement with var iable  coefficients. 

Numerical  resu l t s  were  included for an ellipsoidal shel l  of revolution 

and f o r  a hemispherical  shell. 

consis ts  of two se t sg  the lower sequence and the upper sequence, s imi l a r  

to what Baker [30] obtained in 1961 f o r  spherical  shel ls-  

previous discussion of axisymmetr ic  extensional vibrations of spherical  

shel ls ,  it can be concluded that the first  se t  i s  a degenerated case  of 

the bending modes which cannot be treated sat isfactor i ly  by membrane  

theory unless the thickness is extremely small .  

It was found that the frequency spectrum 

F r o m  the 

In the las t  section of 
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his  papers  Hwang included a discussion of the edge effect solution to 

account for  the effects of bending and t r ansve r se  shea r  s t r e s s e s  nea r  

the boundary. A s imi la r  approach has been employed by DeSilva and 

Ters teeg  [46] ir, treating the s a m e  przblern except that the lofigitudina! 

iner t ia  is neglected, F r o m  the results of KalninsU paper  [ 3 2 ]  a it  

appears  that the bending effects a r e  important for  the bending modes 

(the lower branch in membrane  theory), while the longitudinal iner t ia  

is important fo r  the mem,brane modes (the upper branch in membrane  

theory),  Therefore ,  the simultaneous neglect of ben$ing effects and 

longitudinal iner t ia  seems to l imit  the application of their  theory, 

the second p a r t  of their  papery  DeSilva and Ters teeg  a l so  developed a 

boundary layer  theory by assuming that the t r ansve r se  displacement 

component predominates.  

In 

Shiraishi and DiMaggio [4a] used a purturbation approach to 

analyze the extensional axisymmetr ic  vibrations of prolate  spheroidal 

shells.  The thickness of the shell  is not uniform since the inner  and 

outer sur faces  a r e  formed by rotating confocal ell ipses with respect  to 

the i r  minor  axis. 

eccentr ic i ty  which have the solution f o r  a spherical  shel l  as their  first 

t e r m ,  and converge rapidly for  smal l  eccentricit ies.  

The solutions a r e  obtained in  power s e r i e s  of the 

Hopprnann, Cohen and Kunukkasseril [45] have made an attempt 

to use Love's bending theory in their  investigation of axisymmetr ic  
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vibrat ions of paraboloidal shel ls  of revolution, but no solutions a r e  

obtained because of the complexity of the equations. However, ex-  

per imenta l  r e su l t s  a r e  reported f o r  f requencies  and nodal pa t te rns  

of ax isymmetr ic  and a symmet r i c  vibraticns of two mcdels  cf p a r a -  

boloidal she l l s  of revolution. 



SUMMARY 

A s  pointed out ea r l i e r ,  the analysis of she l l  vibrations is 

extremely complex and involved. 

t ic solutions to dynamic shel l  equations a r e  eminent, To  solve the 

governing par t ia l  differeritial equations one has  to confront the fol- 

lowing mathematical  tasks: to make a judicious choice of possible 

auxiliary var iables  ,which might uncouple the equations, to select  

a p rope r  form for  the eigen functions which might reduce some equa- 

tions to ordinary differential equations, and finally, to  perform an 

inordinate amount of computer work i f  the solutions a r e  not expressible  

in the highly limited tabulated functions. 

The difficulties in obtaining analy- 

To date,  mos t  investigations have been concerned with a few 

types of shel ls  of revolution with very simple geometry,  even for  

which the solutions in asymmetr ic  cases a r e  s t i l l  unsatisfactory to 

account for  all experimental  observed phenomena. Fu r the r  analytic 

investigations w i l l  inevitably involve sophisticated, mathematical  

ingenuity,(e. g. , Refs. [27] , 1311 and [ 3 3 ]  ). Therefore ,  f rom an 

engineerYs  view point, there  is a dire  need to develop new approximate 

techniques which enable one to solve more  prac t ica l  problems with 

acceptable accuracy. 

m o r e  attention and systematic development. 

It s eems  that the following two approaches deserve  



1. The boundary layer  theory. (e. g. Ref. [46] [48] ) 

In most  practically important vibrati'on modes of open shel ls  

(or composite shel ls)  the s t ra ins  in  a narrow region along the edge 

(o r  connection seam) are  more  complicated than those in the internal  

pa r t  of the shell. A separa te  treatment of the boundary layer  can con- 

siderably simplify the analysis. The internal  p a r t  can usually be r e -  

garded a s  a region of purely inextensional vibration o r  of purely ex- 

tensional vibration. The boundary conditions which a r e  not satisfied 

by the simplified solutions may be satisfied with the help of additional 

boundary layer  solutions. 

2. Purturbation theory. (e.'g., Ref. [47] ). When the she l l  

configuration deviates only slightly from a s impler  one whose solution 

is available, the var ious quantities o r  t e r m s  of the governing dif- 

fe ren t ia l  equations can be expanded into power s e r i e s  of some s m a l l  

p a r a m e t e r s  specifying the deviation, and then the differential  equations 

can be simplified by neglecting high osder t e r m s  in such p a r a m e t e r s ?  

and solutions can be obtained in  power s e r i e s  of the same.  This ap-  

proach  may be proven invaluable for,  such as, cylindrical  shel ls  with 

an elliptic c r o s s  section which has  a smal l  eccentricity,  o r  for  slightly 

bend c i rcu lar  cylindrical  shel ls ,  etc, 

In concluding this review, i t  i s  felt  that for  most  prac t ica l  

important  problems remaining s o  far unsolved o r  poorly solved, para l le l  



2?  

works should be ca r r i ed  out in theoretical and experimental  investigations. 

Thei r  mutual guidance and feedback type correct ions may eventually 

bring for th  a better understanding of the dynamic charac te r i s t ics  of thin 

shells. 
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